Published in

MDPI, Polymers, 11(10), p. 1212, 2018

DOI: 10.3390/polym10111212

Links

Tools

Export citation

Search in Google Scholar

Creation of Superhydrophobic Poly(L-phenylalanine) Nonwovens by Electrospinning

Journal article published in 2018 by Hiroaki Yoshida ORCID, Kazuhiro Yanagisawa
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

From the viewpoint of green chemistry and environmental chemistry, an important challenge in the field of superhydrophobic materials is to create them with only bio-based molecules. We developed superhydrophobic and chemically stable poly(L-phenylalanine) (PolyPhe) nonwovens by electrospinning. PolyPhe was selected because, due to its very rigid chemical structure, it is one of the toughest and most hydrophobic polymers among polymers composed only of amino acids. The water contact angle on the nonwovens is a maximum of 160°, and the droplets are stably adhered and remain still on the nonwoven surface even if it is turned over, thereby suggesting a petal-type superhydrophobicity. The nonwovens show a good chemical stability, and their weight remains unchanged after 5 days immersion in acidic (pH 2) and basic (pH 12) conditions. In addition, the superhydrophobic property is not lost even after the alkali treatment. Such tough superhydrophobic materials are intriguing for further biomedical and environmental applications.