Published in

Wiley, European Journal of Immunology, 3(37), p. 798-806, 2007

DOI: 10.1002/eji.200636743

Links

Tools

Export citation

Search in Google Scholar

Potent T cell agonism mediated by a very rapid TCR/pMHC interaction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33-41 (KAVYNFATC), presented in the context of H-2D(b). The cellular responses to various related H-2D(b) peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection. Here, we analyse the binding of the P14 soluble TCR to a broad panel of related H-2D(b)-peptide complexes by surface plasmon resonance, and compare this with their diverse cellular responses. P14 TCR binds H-2D(b)-gp33 with a KD of 3 microM (+/-0.5 microM), typical of an immunodominant antiviral TCR, but with unusually fast kinetics (k(off) = 1 s(-1)), corresponding to a half-life of 0.7 s at 25 degrees C, outside the range previously observed for murine agonist TCR/pMHC interactions. The most striking feature of these data is that a very short half-life does not preclude the ability of a TCR/pMHC interaction to induce antiviral immunity, autoimmune disease and tumour rejection.