Published in

MDPI, Molecules, 11(23), p. 2792, 2018

DOI: 10.3390/molecules23112792

Links

Tools

Export citation

Search in Google Scholar

Selective Oxidation of HMF via Catalytic and Photocatalytic Processes Using Metal-Supported Catalysts

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this study, 5-hydroxymethylfurfural (HMF) oxidation was carried out via both the catalytic and the photocatalytic approach. Special attention was devoted to the preparation of the TiO2-based catalysts, since this oxide has been widely used for catalytic and photocatalytic application in alcohol oxidation reactions. Thus, in the catalytic process, the colloidal heterocoagulation of very stable sols, followed by the spray-freeze-drying (SFD) approach, was successfully applied for the preparation of nanostructured porous TiO2-SiO2 mixed-oxides with high surface areas. The versatility of the process made it possible to encapsulate Pt particles and use this material in the liquid-phase oxidation of HMF. The photocatalytic activity of a commercial titania and a homemade oxide prepared with the microemulsion technique was then compared. The influence of gold, base addition, and oxygen content on product distribution in the photocatalytic process was evaluated.