Published in

American Heart Association, Arteriosclerosis, Thrombosis, and Vascular Biology, 10(38), p. 2460-2473, 2018

DOI: 10.1161/atvbaha.118.311409

Links

Tools

Export citation

Search in Google Scholar

SREBF1 /MicroRNA-33b Axis Exhibits Potent Effect on Unstable Atherosclerotic Plaque Formation In Vivo

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Objective— Atherosclerosis is a common disease caused by a variety of metabolic and inflammatory disturbances. MicroRNA (miR)-33a within SREBF2 (sterol regulatory element-binding factor 2) is a potent target for treatment of atherosclerosis through regulating both aspects; however, the involvement of miR-33b within SREBF1 remains largely unknown. Although their host genes difference could lead to functional divergence of miR-33a/b, we cannot dissect the roles of miR-33a/b in vivo because of lack of miR-33b sequences in mice, unlike human. Approach and Results— Here, we analyzed the development of atherosclerosis using miR-33b knock-in humanized mice under apolipoprotein E–deficient background. MiR-33b is prominent both in human and mice on atheroprone condition. MiR-33b reduced serum high-density lipoprotein cholesterol levels and systemic reverse cholesterol transport. MiR-33b knock-in macrophages showed less cholesterol efflux capacity and higher inflammatory state via regulating lipid rafts. Thus, miR-33b promotes vulnerable atherosclerotic plaque formation. Furthermore, bone marrow transplantation experiments strengthen proatherogenic roles of macrophage miR-33b. Conclusions— Our data demonstrated critical roles of SREBF1 -miR-33b axis on both lipid profiles and macrophage phenotype remodeling and indicate that miR-33b is a promising target for treating atherosclerosis.