Published in

Springer, Pflügers Archiv European Journal of Physiology, 1(467), p. 133-139, 2014

DOI: 10.1007/s00424-014-1532-0

Links

Tools

Export citation

Search in Google Scholar

Mechanical allodynia

Journal article published in 2014 by Stéphane Lolignier, Niels Eijkelkamp ORCID, John N. Wood
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Mechanical allodynia (other pain) is a painful sensation caused by innocuous stimuli like light touch. Unlike inflammatory hyperalgesia that has a protective role, allodynia has no obvious biological utility. Allodynia is associated with nerve damage in conditions such as diabetes, and is likely to become an increasing clinical problem. Unfortunately, the mechanistic basis of this enhanced sensitivity is incompletely understood. In this review, we describe evidence for the involvement of candidate mechanosensitive channels such as Piezo2 and their role in allodynia, as well as the peripheral and central nervous system mechanisms that have also been implicated in this form of pain. Specific treatments that block allodynia could be very useful if the cell and molecular basis of the condition could be determined. There are many potential mechanisms underlying this condition ranging from alterations in mechanotransduction and sensory neuron excitability to the actions of inflammatory mediators and wiring changes in the CNS. As with other pain conditions, it is likely that the range of redundant mechanisms that cause allodynia will make therapeutic intervention problematic.