Published in

Ferrata Storti Foundation, Haematologica, 1(100), p. 55-61

DOI: 10.3324/haematol.2014.112912

Links

Tools

Export citation

Search in Google Scholar

Novel gene targets detected by genomic profiling in a consecutive series of 126 adults with acute lymphoblastic leukemia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In contrast to acute lymphoblastic leukemia in children, adult cases are associated with a very poor prognosis. In order to ascertain whether the frequencies and patterns of submicroscopic changes, identifiable with single nucleotide polymorphism array analysis, differ between childhood and adult acute lymphoblastic leukemia, we performed single nucleotide polymorphism array analyses of 126 adult cases, the largest series to date, including 18 paired diagnostic and relapse samples. Apart from identifying characteristic microdeletions of the CDKN2A, EBF1, ETV6, IKZF1, PAX5 and RB1 genes, the present study uncovered novel, focal deletions of the BCAT1, BTLA, NR3C1, PIK3AP1 and SERP2 genes in 2-6% of the adult cases. IKZF1 deletions were associated with B-cell precursor acute lymphoblastic leukemia (P=0.036), BCR-ABL1-positive acute lymphoblastic leukemia (P>0.001), and higher white blood cell counts (P=0.005). In addition, recurrent deletions of RASSF3 and TOX were seen in relapse samples. Comparing paired diagnostic/relapse samples revealed identical changes at diagnosis and relapse in 27%, clonal evolution in 22%, and relapses evolving from ancestral clones in 50%, akin to what has previously been reported in pediatric acute lymphoblastic leukemia and indicating that the mechanisms of relapse may be similar in adult and childhood cases. These findings provide novel insights into the leukemogenesis of adult acute lymphoblastic leukemia, showing similarities to childhood disease in the pattern of deletions and the clonal relationship between diagnostic and relapse samples, but with the adult cases harboring additional aberrations that have not been described in pediatric acute lymphoblastic leukemia.