Dissemin is shutting down on January 1st, 2025

Published in

MDPI, Minerals, 10(8), p. 464, 2018

DOI: 10.3390/min8100464

Links

Tools

Export citation

Search in Google Scholar

Decoding of Mantle Processes in the Mersin Ophiolite, Turkey, of End-Member Arc Type: Location of the Boninite Magma Generation

Journal article published in 2018 by Satoko Ishimaru, Yuji Saikawa, Makoto Miura, Osman Parlak ORCID, Shoji Arai ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The Mersin ophiolite, Turkey, is of typical arc type based on geochemistry of crustal rocks without any signs of mid-ocean ridge (MOR) affinity. We examined its ultramafic rocks to reveal sub-arc mantle processes. Mantle peridotites, poor in clinopyroxene (<1.0 vol.%), show high Fo content of olivine (90–92) and Cr# [=Cr/(Cr + Al) atomic ratio] (=0.62–0.77) of chromian spinel. NiO content of olivine is occasionally high (up to 0.5 wt.%) in the harzburgite. Moho-transition zone (MTZ) dunite is also highly depleted, i.e., spinel is high Cr# (0.78–0.89), clinopyroxene is poor in HREE, and olivine is high Fo (up to 92), but relatively low in NiO (0.1–0.4 wt.%). The harzburgite is residue after high-degree mantle melting, possibly assisted by slab-derived fluid. The high-Ni character of olivine suggests secondary metasomatic formation of olivine-replacing orthopyroxene although replacement textures are unclear. The MTZ dunite is of replacive origin, resulted from interaction between Mg-rich melt released from harzburgite diapir and another harzburgite at the diapir roof. The MTZ dunite is the very place that produced the boninitic and replacive dunite. The MTZ is thicker (>1 km) in Mersin than in MOR-related ophiolite (mostly < 500 m), and this is one of the features of arc-type ophiolite.