Published in

Elsevier, International Journal of Mass Spectrometry, 1(306), p. 63-69, 2011

DOI: 10.1016/j.ijms.2011.06.018

Links

Tools

Export citation

Search in Google Scholar

Strong fragmentation processes driven by low energy electron attachment to various small perfluoroether molecules

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Negative ion formation in the three perfluoroethers (PFEs) diglyme (C(6)F(14)O(3)), triglyme (C(8)F(18)O(4)) and crownether (C(10)F(20)O(5)) is studied following electron attachment in the range from ∼0 to 15 eV. All three compounds show intense low energy resonances at subexcitation energies (<3 eV) decomposing into a variety of negatively charged fragments. These fragment ions are generated via dissociative electron attachment (DEA), partly originating from sequential decompositions on the metastable (μs) time scale as observed from the MIKE (metastable induced kinetic energy) scans. Only in perfluorocrownether a signal due to the non-decomposed parent anion is observed. Additional and comparatively weaker resonances are located in the energy range between ∼10 and 17 eV which preferentially decompose into lighter ions. It is suggested that specific features of perfluoropolyethers (PFPEs) relevant in applications, e.g., the strong bonding to surfaces induced by UV radiation of the substrate or degradation of PFPE films in computer hard disc drives can be explained by their pronounced sensitivity towards low energy electrons.