Published in

Journal of Achievements in Materials and Manufacturing Engineering, 89(1), p. 13-18, 2018

DOI: 10.5604/01.3001.0012.6667

Links

Tools

Export citation

Search in Google Scholar

Tribological study of low friction DLC:Ti and MoS2 thin films

Journal article published in 2018 by A. Paradecka, K. Lukaszkowicz ORCID
This paper was not found in any repository; the policy of its publisher is unknown or unclear.
This paper was not found in any repository; the policy of its publisher is unknown or unclear.

Full text: Unavailable

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Purpose: The purpose of this article is to characterize and compare the microstructure and tribological properties of low friction DLC:Ti and MoS2 thin films deposited on the austenitic steel X6CrNiMoTi17-12-2 substrate. Design/methodology/approach: In the research, the samples of the DLC:Ti and MoS2 thin films deposited by PACVD technology and magnetron sputtering method respectively were used. Observations of topography were made using atomic force microscope (AFM). Adhesion of the coating to the substrate material was verified by the scratch test. The friction coefficient and wear rate of the coating were determined in the ball-on-disc test. Findings: AFM as well as adhesion and friction coefficient tests confirmed low friction nature of MoS2 and DLC:Ti coatings. During the research information on the behaviour of coatings under tribological load was obtained. The investigated coating reveals high wear resistance and good adhesion to the substrate. Practical implications: The area of testing of low-friction thin films is widely studied due to their practical application. Intensive development of new technologies requires the introduction of corresponding layers of both full protective functions and reducing friction. Originality/value: Growing area of low-friction coatings with specific properties requires thorough tribological and topographical research, which is closely related to these properties.