Published in

Oxford Scholarship Online, 2018

DOI: 10.1093/oso/9780198805021.003.0002

Links

Tools

Export citation

Search in Google Scholar

Euler’s Equations

Book published in 2018 by S. G. Rajeev
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
White circle
Published version: policy unclear
Data provided by SHERPA/RoMEO

Abstract

Euler derived the fundamental equations of an ideal fluid, that is, in the absence of friction (viscosity). They describe the conservation of momentum. We can derive from it the equation for the evolution of vorticity (Helmholtz equation). Euler’s equations have to be supplemented by the conservation of mass and by an equation of state (which relates density to pressure). Of special interest is the case of incompressible flow; when the fluid velocity is small compared to the speed of sound, the density may be treated as a constant. In this limit, Euler’s equations have scale invariance in addition to rotation and translation invariance. d’Alembert’s paradox points out the limitation of Euler’s equation: friction cannot be ignored near the boundary, nomatter how small the viscosity.