Published in

American Association for the Advancement of Science, Science, 5793(313), p. 1617-1620, 2006

DOI: 10.1126/science.1131867

Links

Tools

Export citation

Search in Google Scholar

Near-Threshold Inelastic Collisions Using Molecular Beams with a Tunable Velocity

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Molecular scattering behavior has generally proven difficult to study at low collision energies. We formed a molecular beam of OH radicals with a narrow velocity distribution and a tunable absolute velocity by passing the beam through a Stark decelerator. The transition probabilities for inelastic scattering of the OH radicals with Xe atoms were measured as a function of the collision energy in the range of 50 to 400 wavenumbers, with an overall energy resolution of about 13 wavenumbers. The behavior of the cross-sections for inelastic scattering near the energetic thresholds was accurately measured, and excellent agreement was obtained with cross-sections derived from coupled-channel calculations on ab initio computed potential energy surfaces.