Published in

MDPI, Agriculture, 10(8), p. 160, 2018

DOI: 10.3390/agriculture8100160

Links

Tools

Export citation

Search in Google Scholar

The Common Bean (Phaseolus vulgaris) Basic Leucine Zipper (bZIP) Transcription Factor Family: Response to Salinity Stress in Fertilized and Symbiotic N2-Fixing Plants

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The basic leucine zipper (bZIP) transcription factor family regulates plant developmental processes and response to stresses. The common bean (Phaseolus vulgaris), an important crop legume, possesses a whole set of 78 bZIP (PvbZIP) genes, the majority of these (59%) are most highly expressed in roots and nodules, root-derived new organs formed in the rhizobia N2-fixing symbiosis. Crop production is highly affected by salinity in Cuba and other countries. In this work we characterized the adverse effect of salinity to common bean plants of the Cuban CC-25-9-N cultivar grown in fertilized (full N-content) or symbiotic N-fixation (rhizobia inoculated) conditions. We assessed if PvbZIP TF participate in CC-25-9-N common bean response to salinity. Quantitative reverse-transcriptase-PCR (qRT-PCR) expression analysis showed that 26 out of 46 root/nodule-enhanced PvbZIP, that responded to salt stress in roots and/or nodules from fertilized and N2-fixing CC-25-9-N plants. From public common bean transcriptomic data, we identified 554 genes with an expression pattern similar to that of salt-responsive PvbZIP genes, and propose that the co-expressed genes are likely to be involved in the stress response. Our data provide a foundation for evaluating the individual roles of salt-responsive genes and to explore the PvbZIP-mediated improvement of salt tolerance in common bean.