Published in

Elsevier, The American Journal of Pathology, 2(183), p. 493-503, 2013

DOI: 10.1016/j.ajpath.2013.04.013

Links

Tools

Export citation

Search in Google Scholar

Sox9 Induction, Ectopic Paneth Cells, and Mitotic Spindle Axis Defects in Mouse Colon Adenomatous Epithelium Arising From Conditional Biallelic Apc Inactivation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We generated transgenic mice in which human CDX2 gene elements control expression of a tamoxifen-regulated Cre protein (CDX2P-CreER(T2)) to allow for inducible gene targeting in intestinal epithelium. After tamoxifen dosing of CDX2P-CreER(T2) mice, Cre activity was detected in the distal ileal, cecal, colonic, and rectal epithelium, with selected crypt base, transit amplifying, and surface cells all capable of activating Cre function. Four weeks after tamoxifen dosing of CDX2P-CreER(T2) mice carrying a Cre-activated fluorescent reporter, single crypts were uniformly fluorescence positive or negative, reflecting Cre activation in crypt stem cells. Biallelic inactivation of the Apc tumor suppressor gene via the CDX2P-CreER(T2) transgene in colon epithelium led to acute alterations in cell proliferation, apoptosis, and morphology, along with mitotic spindle misorientation, β-catenin nuclear localization, and induction of the intestinal stem cell markers Lgr5 and Musashi-1 and the Sox9 transcription factor. Normal mouse colon epithelium lacks Paneth cells, a key small intestine niche cell type, and Paneth cell differentiation is dependent on Sox9 function. In Apc-deficient colon epithelium, ectopic Paneth-like cells were seen outside the crypt base, such as new crypt budding sites. Our data indicate Apc inactivation via CDX2P-CreER(T2) targeting in mouse colon epithelium is sufficient to induce adenomatous changes and the generation of Paneth-like cells from neoplastic progenitors, with potentially significant roles in colon adenoma development and progression.