Published in

Wiley, Limnology and Oceanography, 3(49), p. 680-685, 2004

DOI: 10.4319/lo.2004.49.3.0680

Links

Tools

Export citation

Search in Google Scholar

Daphnia can protect diatoms from fungal parasitism

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection process. Because the size of fungal zoospores is well within the preferred range of food particle size for Daphnia, we hypothesize that Daphnia will affect the fungal infection process by reducing the abundance of fungal zoospores. To examine the effects of zooplankton on the fungal parasitism of phytoplankton, we performed grazing experiments. These experiments revealed that Daphnia significantly decreased fungal parasitism by grazing on the fungal zoospores. Daphnia also had a small positive effect on fungal infection, probably by increasing the encounter rate between fungi and host phytoplankton cells. These results suggest that Daphnia can affect the seasonal succession of chytrids and their host phytoplankton species. In addition, these results imply that zoospore-producing fungi may play an ecological role as food sources for Daphnia in aquatic food webs. ; Many phytoplankton species are susceptible to chytrid fungal parasitism. Much attention has been paid to abiotic factors that determine whether fungal infections become epidemic. It is still unknown, however, how biotic factors, such as interactions with zooplankton, affect the fungal infection process. Because the size of fungal zoospores is well within the preferred range of food particle size for Daphnia, we hypothesize that Daphnia will affect the fungal infection process by reducing the abundance of fungal zoospores. To examine the effects of zooplankton on the fungal parasitism of phytoplankton, we performed grazing experiments. These experiments revealed that Daphnia significantly decreased fungal parasitism by grazing on the fungal zoospores. Daphnia also had a small positive effect on fungal infection, probably by increasing the encounter rate between fungi and host phytoplankton cells. These results suggest that Daphnia can affect the seasonal succession of chytrids and their host phytoplankton species. In addition, these results imply that zoospore-producing fungi may play an ecological role as food sources for Daphnia in aquatic food webs.