Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Environmental Research Letters, 11(14), p. 114037, 2019

DOI: 10.1088/1748-9326/ab4b71

Links

Tools

Export citation

Search in Google Scholar

Projecting global urban land expansion and heat island intensification through 2050

Journal article published in 2019 by Kangning Huang ORCID, Xia Li, Xiaoping Liu, Karen C. Seto
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Urban populations are expected to increase by 2–3 billion by 2050, but we have limited understanding of how future global urban expansion will affect urban heat island (UHI) and hence change the geographic distributions of extreme heat risks. Here we develop spatially explicit probabilistic global projections of UHI intensification due to urban land expansion through 2050. Our projections show that urban land areas are expected to expand by 0.6–1.3 million km2 between 2015 and 2050, an increase of 78%–171% over the urban footprint in 2015. This urban land expansion will result in average summer daytime and nighttime warming in air temperature of 0.5 °C–0.7 °C, up to ∼3 °C in some locations. This warming is on average about half, and sometimes up to two times, as strong as that caused by greenhouse gas (GHG) emissions (multi-model ensemble average projections in Representative Concentration Pathway 4.5). This extra urban expansion-induced warming, presented here, will increase extreme heat risks for about half of the future urban population, primarily in the tropical Global South, where existing forecasts already indicate stronger GHG emissions-warming and lack of adaptive capacity. In these vulnerable urban areas, policy interventions to restrict or redistribute urban expansion and planning strategies to mitigate UHIs are needed to reduce the wide ranges of impacts on human health, energy system, urban ecosystem, and infrastructures.