Published in

SAGE Publications, American Journal of Sports Medicine, 3(47), p. 704-712, 2019

DOI: 10.1177/0363546518819825

Links

Tools

Export citation

Search in Google Scholar

Tissue on the Transferred Coracoid Graft After Latarjet Procedure: Histological and Morphological Findings

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Background: Anterior shoulder instability is a debilitating condition that can require stabilization via a Latarjet procedure. Purpose: The aim of this study was to characterize the histological composition of the articular-sided surface of the coracoid bone graft after Latarjet procedure. Specific features of cells isolated from the coracoid and graft tissues were assessed. Study Design: Case series; Level of evidence, 4. Methods: Tissue samples were harvested from 9 consecutive patients undergoing arthroscopic debridement and screw removal after arthroscopic or open Latarjet procedure. Tissues were processed histologically. In 2 patients, the samples were analyzed to assess specific cellular properties. Results: Safranin O staining indicated that glenoid tissues contained variable amounts of glycosaminoglycan (GAG) and round chondrocytic cells mainly organized in clusters. Graft tissues contained less GAG and were more cellular but were not organized in clusters and had variable morphological features. An association appeared to exist between the cartilage quality of glenoid tissues and that of the graft tissues. Cells isolated from glenoid and graft tissues exhibited similar proliferation capacity. Conclusion: The results of our analysis show that cells located at the articular-sided surface of transferred coracoid grafts demonstrate fibrocartilaginous properties and may have the capacity for chondral proliferation. Further studies are needed to confirm this observation and future application.