Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 32(116), p. 16003-16011, 2019

DOI: 10.1073/pnas.1906223116

Links

Tools

Export citation

Search in Google Scholar

Trading amino acids at the aphid–Buchnera symbiotic interface

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Significance Plant sap-feeding insects thrive despite feeding exclusively on a diet lacking in essential amino acids. This nutritional deficit is countered through endosymbiotic relationships with microbial symbionts. Nonessential amino acids, vital for microbial symbionts, are utilized by symbiont metabolic pathways and yield essential amino acids required by their eukaryotic hosts. Symbionts are completely dependent on their host to meet nutritional requirements. The endosymbionts are surrounded individually by host-derived symbiosomal membranes and are housed within specialized host bacteriocyte cells. The transport capabilities of the symbiosomal membrane remain unknown. Here, we identify a transport system that mediates a crucial step in this metabolic complementarity: a transporter capable of transporting nonessential amino acids across the symbiosomal membrane of the pea aphid Acyrthosiphon pisum .