Published in

American Association for the Advancement of Science, Science, 6419(362), 2018

DOI: 10.1126/science.aat9446

Links

Tools

Export citation

Search in Google Scholar

Open-source discovery of chemical leads for next-generation chemoprotective antimalarials

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A path to tackle liver-stage parasites Malaria parasites are evolutionarily prepared to resist drug attack. Resistance is emerging to even the latest frontline combination therapies, which target the blood stages of the Plasmodium parasite. As an alternative strategy, Antonova-Koch et al. investigated the possibilities of drugs against liver-stage parasites (see the Perspective by Phillips and Goldberg). To do so, they devised a luciferase-reporter drug screen for the rodent parasite Plasmodium berghei. Three rounds of increasingly stringent screening were used. From this regime, several chemotypes that inhibit Plasmodium mitochondrial electron transport were identified. Excitingly, several new scaffolds, with as-yet-unknown modes of action but solely targeting the parasites' liver stages, emerged as promising drug leads for further development. Science , this issue p. eaat9446 ; see also p. 1112