Dissemin is shutting down on January 1st, 2025

Published in

American Diabetes Association, Diabetes Care, 4(42), p. 651-656, 2019

DOI: 10.2337/dc18-0148

Links

Tools

Export citation

Search in Google Scholar

Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

OBJECTIVE To determine the diagnostic accuracy in a real-world primary care setting of a deep learning–enhanced device for automated detection of diabetic retinopathy (DR). RESEARCH DESIGN AND METHODS Retinal images of people with type 2 diabetes visiting a primary care screening program were graded by a hybrid deep learning–enhanced device (IDx-DR-EU-2.1; IDx, Amsterdam, the Netherlands), and its classification of retinopathy (vision-threatening [vt]DR, more than mild [mtm]DR, and mild or more [mom]DR) was compared with a reference standard. This reference standard consisted of grading according to the International Clinical Classification of DR by the Rotterdam Study reading center. We determined the diagnostic accuracy of the hybrid deep learning–enhanced device (IDx-DR-EU-2.1) against the reference standard. RESULTS A total of 1,616 people with type 2 diabetes were imaged. The hybrid deep learning–enhanced device’s sensitivity/specificity against the reference standard was, respectively, for vtDR 100% (95% CI 77.1–100)/97.8% (95% CI 96.8–98.5) and for mtmDR 79.4% (95% CI 66.5–87.9)/93.8% (95% CI 92.1–94.9). CONCLUSIONS The hybrid deep learning–enhanced device had high diagnostic accuracy for the detection of both vtDR (although the number of vtDR cases was low) and mtmDR in a primary care setting against an independent reading center. This allows its’ safe use in a primary care setting.