Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, Bioinformatics, 1(36), p. 205-211, 2019

DOI: 10.1093/bioinformatics/btz530

Links

Tools

Export citation

Search in Google Scholar

MiTPeptideDB: a proteogenomic resource for the discovery of novel peptides

Journal article published in 2019 by Elizabeth Guruceaga, Alba Garin-Muga, Victor Segura ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Motivation The principal lines of research in MS/MS based Proteomics have been directed toward the molecular characterization of the proteins including their biological functions and their implications in human diseases. Recent advances in this field have also allowed the first attempts to apply these techniques to the clinical practice. Nowadays, the main progress in Computational Proteomics is based on the integration of genomic, transcriptomic and proteomic experimental data, what is known as Proteogenomics. This methodology is being especially useful for the discovery of new clinical biomarkers, small open reading frames and microproteins, although their validation is still challenging. Results We detected novel peptides following a proteogenomic workflow based on the MiTranscriptome human assembly and shotgun experiments. The annotation approach generated three custom databases with the corresponding peptides of known and novel transcripts of both protein coding genes and non-coding genes. In addition, we used a peptide detectability filter to improve the computational performance of the proteomic searches, the statistical analysis and the robustness of the results. These innovative additional filters are specially relevant when noisy next generation sequencing experiments are used to generate the databases. This resource, MiTPeptideDB, was validated using 43 cell lines for which RNA-Seq experiments and shotgun experiments were available. Availability and implementation MiTPeptideDB is available at http://bit.ly/MiTPeptideDB. Supplementary information Supplementary data are available at Bioinformatics online.