Dissemin is shutting down on January 1st, 2025

Published in

arXiv, 2018

DOI: 10.48550/arxiv.1811.06533

National Academy of Sciences, Proceedings of the National Academy of Sciences, 28(116), p. 13825-13832, 2019

DOI: 10.1073/pnas.1821458116

Links

Tools

Export citation

Search in Google Scholar

Learning to predict the cosmological structure formation

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

Matter evolved under the influence of gravity from minuscule density fluctuations. Nonperturbative structure formed hierarchically over all scales and developed non-Gaussian features in the Universe, known as the cosmic web. To fully understand the structure formation of the Universe is one of the holy grails of modern astrophysics. Astrophysicists survey large volumes of the Universe and use a large ensemble of computer simulations to compare with the observed data to extract the full information of our own Universe. However, to evolve billions of particles over billions of years, even with the simplest physics, is a daunting task. We build a deep neural network, the Deep Density Displacement Model ( D 3 M ), which learns from a set of prerun numerical simulations, to predict the nonlinear large-scale structure of the Universe with the Zel’dovich Approximation (ZA), an analytical approximation based on perturbation theory, as the input. Our extensive analysis demonstrates that D 3 M outperforms the second-order perturbation theory (2LPT), the commonly used fast-approximate simulation method, in predicting cosmic structure in the nonlinear regime. We also show that D 3 M is able to accurately extrapolate far beyond its training data and predict structure formation for significantly different cosmological parameters. Our study proves that deep learning is a practical and accurate alternative to approximate 3D simulations of the gravitational structure formation of the Universe.