Published in

American Academy of Neurology (AAN), Neurology, 11(92), p. 519-533, 2019

DOI: 10.1212/wnl.0000000000007099

Links

Tools

Export citation

Search in Google Scholar

Imaging outcome measures of neuroprotection and repair in MS

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

ObjectiveTo summarize current and emerging imaging techniques that can be used to assess neuroprotection and repair in multiple sclerosis (MS), and to provide a consensus opinion on the potential utility of each technique in clinical trial settings.MethodsClinicians and scientists with expertise in the use of MRI in MS convened in Toronto, Canada, in November 2016 at a North American Imaging in Multiple Sclerosis (NAIMS) Cooperative workshop meeting. The discussion was compiled into a manuscript and circulated to all NAIMS members in attendance. Edits and feedback were incorporated until all authors were in agreement.ResultsA wide spectrum of imaging techniques and analysis methods in the context of specific study designs were discussed, with a focus on the utility and limitations of applying each technique to assess neuroprotection and repair. Techniques were discussed under specific themes, and included conventional imaging, magnetization transfer ratio, diffusion tensor imaging, susceptibility-weighted imaging, imaging cortical lesions, magnetic resonance spectroscopy, PET, advanced diffusion imaging, sodium imaging, multimodal techniques, imaging of special regions, statistical considerations, and study design.ConclusionsImaging biomarkers of neuroprotection and repair are an unmet need in MS. There are a number of promising techniques with different strengths and limitations, and selection of a specific technique will depend on a number of factors, notably the question the trial seeks to answer. Ongoing collaborative efforts will enable further refinement and improved methods to image the effect of novel therapeutic agents that exert benefit in MS predominately through neuroprotective and reparative mechanisms.