Published in

Oxford University Press (OUP), Zoological Journal of the Linnean Society

DOI: 10.1093/zoolinnean/zlz010

Links

Tools

Export citation

Search in Google Scholar

Climate variability impacts on diversification processes in a biodiversity hotspot: a phylogeography of ancient pseudoscorpions in south-western Australia

Journal article published in 2019 by Danilo Harms ORCID, J. Dale Roberts, Mark S. Harvey ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract The south-western division of Australia is the only biodiversity hotspot in Australia and is well-known for extreme levels of local endemism. Climate change has been identified as a key threat for flora and fauna, but very few data are presently available to evaluate its impact on invertebrate fauna. Here, we derive a molecular phylogeography for pseudoscorpions of the genus Pseudotyrannochthonius that in the south-west are restricted to regions with the highest rainfall. A dated molecular phylogeny derived from six gene fragments is used for biogeographic reconstruction analyses, spatial mapping, environmental niche-modelling, and to infer putative species. Phylogenetic analyses uncover nine clades with mostly allopatric distributions and often small linear ranges between 0.5 and 130 km. Molecular dating suggests that the origins of contemporary diversity fall into a period of warm/humid Palaeogene climates, but splits in the phylogeny coincide with major environmental shifts, such as significant global cooling during the Middle Miocene. By testing several models of historical biogeography available for the south-west, we determine that Pseudotyrannochthonius is an ancient relict lineage that principally follows a model of allopatric speciation in mesic zone refugia, although there are derivations from this model in that some species are older and distribution patterns more complex than expected. Ecological niche models indicate that drier and warmer future climates will lead to range contraction towards refugia of highest rainfall, probably mimicking past variations that have generated high diversity in these areas. Their conservation management will be crucial for preserving the unique biodiversity heritage of the south-west.