Published in

Nature Research, Scientific Reports, 1(9), 2019

DOI: 10.1038/s41598-019-44897-7

Links

Tools

Export citation

Search in Google Scholar

Immunostaining in whole-mount lipid-cleared peripheral nerves and dorsal root ganglia after neuropathy in mice

Journal article published in 2019 by L. Bernal, E. Cisneros, N. García-Magro ORCID, C. Roza ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractImmunohistochemical characterization of primary afferent fibers (intact or after nerve damage) is traditionally performed in thin sections from dorsal root ganglia (DRGs) or in teased fibers, as light scattering in whole-mounts compromises visualization. These procedures are time-consuming, require specific equipment and advanced experimental skills. Lipid-clearing techniques are increasing in popularity, but they have never been used for the peripheral nervous system. We established a modified, inexpensive clearing method based on lipid-removal protocols to make transparent peripheral nerve tissue (inCLARITY). We compared retrograde-labeling and free-floating immunostaining with cryo-sections. Confocal microscopy on whole-mount transparent DRGs showed neurons marked with retrograde tracers applied to experimental neuromas (Retrobeads, Fluoro-ruby, Fluoro-emerald, DiI, and Fluoro-gold). After immunostaining with calcitonin gene-related peptide (peptidergic) or isolectin IB4 (non-peptidergic), nociceptors were visualized. Immunostaining in transparent whole-mount nerves allows simultaneous evaluation of the axotomized branches containing the neuroma and neighboring intact branches as they can be mounted preserving their anatomical disposition and fiber integrity. The goal of our study was to optimize CLARITY for its application in peripheral nerve tissues. The protocol is compatible with the use of retrograde tracers and improves immunostaining outcomes when compared to classical cryo-sectioning, as lack of lipids maximizes antibody penetration within the tissue.