Published in

MDPI, Crystals, 6(9), p. 285, 2019

DOI: 10.3390/cryst9060285

Links

Tools

Export citation

Search in Google Scholar

Spin Transition in the Cu(hfac)2 Complex with (4-Ethylpyridin-3-yl)-Substituted Nitronyl Nitroxide Caused by the “Asymmetric” Structural Rearrangement of Exchange Clusters in the Heterospin Molecule

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Methods for the synthesis of binuclear [Cu(hfac)2LEt]2 and tetranuclear [[Cu(hfac)2]4(LEt)2] heterospin compounds based on copper hexafluoroacetylacetonate [Cu(hfac)2] and 2-(4-ethylpyridin-3-yl)-4,5-bis(spirocyclopentyl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (LEt), were developed. The crystals of the complexes are elastic and do not crash during repeated cooling–heating cycles. It was found that a singlet–triplet conversion occurred in all of the {Cu(II)–O•–N<} exchange clusters in the molecules of the binuclear [Cu(hfac)2LEt]2 which led to spin coupling with cooling. The transition occurred in a wide temperature range with a maximum gradient ΔχT at ≈180 K. The structural transformation of the crystals takes place at T < 200 K and is accompanied by the lowering of symmetry from monoclinic to triclinic, twinning, and a considerable shortening of the Cu–ONO distance (2.19 and 1.97 Å at 295 and 50 K, respectively). For the tetranuclear [[Cu(hfac)2]4(LEt)2], two structural transitions were recorded (at ≈154 K and ≈118 K), which led to a considerable change in the spatial position of the Et substituent in the nitronyl nitroxyl fragment. The low-temperature process was accompanied by a spin transition recorded as a hysteresis loop on the χT(T) curve during the repeated cooling–heating cycles (T½↑ = 122 K, T½↓ = 115 K). This transition is unusual because it causes spin coupling in half of all of the {>N–•O–Cu2+} terminal exchange clusters, leading to spin compensation for only two paramagnetic centers of the six centers in the molecule.