Dissemin is shutting down on January 1st, 2025

Published in

American Association for Cancer Research, Molecular Cancer Therapeutics, 2(18), p. 312-322, 2019

DOI: 10.1158/1535-7163.mct-18-0679

Links

Tools

Export citation

Search in Google Scholar

CD3-Bispecific Antibody Therapy Turns Solid Tumors into Inflammatory Sites but Does Not Install Protective Memory

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract Immunotherapy of cancer with CD3-targeting bispecific antibodies (CD3 bsAb) is a fast developing field, and multiple tumor-associated antigens (TAA) are evaluated for hematologic and solid malignancies. The efficacy of these CD3 bsAb is usually examined in xenograft mouse tumor models with human T cells or in genetically engineered mouse models, where human TAA are introduced. These models often fail to fully recapitulate the natural tumor environment, especially for solid cancers, because of interspecies differences. Here, we investigated the systemic and intratumoral effects of a mouse CD3 bsAb in a fully immune-competent mouse melanoma model. Systemic administration of 0.5 mg/kg antibody induced a brief overall T-cell activation that was selectively sustained in the tumor microenvironment for several days. A fast subsequent influx of inflammatory macrophages into the tumor microenvironment was observed, followed by an increase in the number of CD4+ and CD8+ T cells. Although the capacity to directly kill melanoma cells in vitro was very modest, optimal tumor elimination was observed in vivo, even in the absence of CD8+ T cells, implying a redundancy in T-cell subsets for therapeutic efficacy. Finally, we took advantage of the full immune competence of our mouse model and tested immune memory induction. Despite a strong initial immunity against melanoma, treatment with the CD3 bsAb did not install protective memory responses. The observed mechanisms of action revealed in this immune-competent mouse model might form a rational basis for combinatorial approaches.