BMJ Publishing Group, BMJ Open, 6(7), p. e016178, 2017
DOI: 10.1136/bmjopen-2017-016178
Full text: Download
PurposeTo estimate the Australian cancer burden attributable to lifestyle-related risk factors and their combinations using a novel population attributable fraction (PAF) method that accounts for competing risk of death, risk factor interdependence and statistical uncertainty.Participants365 173 adults from seven Australian cohort studies. We linked pooled harmonised individual participant cohort data with population-based cancer and death registries to estimate exposure-cancer and exposure-death associations. Current Australian exposure prevalence was estimated from representative external sources. To illustrate the utility of the new PAF method, we calculated fractions of cancers causally related to body fatness or both tobacco and alcohol consumption avoidable in the next 10 years by risk factor modifications, comparing them with fractions produced by traditional PAF methods.Findings to dateOver 10 years of follow-up, we observed 27 483 incident cancers and 22 078 deaths. Of cancers related to body fatness (n=9258), 13% (95% CI 11% to 16%) could be avoided if those currently overweight or obese had body mass index of 18.5–24.9 kg/m2. Of cancers causally related to both tobacco and alcohol (n=4283), current or former smoking explains 13% (11% to 16%) and consuming more than two alcoholic drinks per day explains 6% (5% to 8%). The two factors combined explain 16% (13% to 19%): 26% (21% to 30%) in men and 8% (4% to 11%) in women. Corresponding estimates using the traditional PAF method were 20%, 31% and 10%. Our PAF estimates translate to 74 000 avoidable body fatness-related cancers and 40 000 avoidable tobacco- and alcohol-related cancers in Australia over the next 10 years (2017–2026). Traditional PAF methods not accounting for competing risk of death and interdependence of risk factors may overestimate PAFs and avoidable cancers.Future plansWe will rank the most important causal factors and their combinations for a spectrum of cancers and inform cancer control activities.