Dissemin is shutting down on January 1st, 2025

Published in

Nature Research, Nature Communications, 1(9), 2018

DOI: 10.1038/s41467-018-06547-w

Links

Tools

Export citation

Search in Google Scholar

Intracellular nucleosomes constrain a DNA linking number difference of −1.26 that reconciles the Lk paradox

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractThe interplay between chromatin structure and DNA topology is a fundamental, yet elusive, regulator of genome activities. A paradigmatic case is the “linking number paradox” of nucleosomal DNA, which refers to the incongruence between the near two left-handed superhelical turns of DNA around the histone octamer and the DNA linking number difference (∆Lk) stabilized by individual nucleosomes, which has been experimentally estimated to be about −1.0. Here, we analyze the DNA topology of a library of mononucleosomes inserted into small circular minichromosomes to determine the average ∆Lk restrained by individual nucleosomes in vivo. Our results indicate that most nucleosomes stabilize about −1.26 units of ∆Lk. This value balances the twist (∆Tw ≈ + 0.2) and writhe (∆Wr ≈ −1.5) deformations of nucleosomal DNA in terms of the equation ∆Lk = ∆Tw + ∆Wr. Our finding reconciles the existing discrepancy between theoretical and observed measurement of the ΔLk constrained by nucleosomes.