Published in

Nature Research, Nature Chemistry, 10(6), p. 934-940, 2014

DOI: 10.1038/nchem.2055

Links

Tools

Export citation

Search in Google Scholar

Redox-inactive metal ions modulate the reactivity and oxygen release of mononuclear non-haem iron(III)–peroxo complexes

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Redox-inactive metal ions that function as Lewis acids play pivotal roles in modulating the reactivity of oxygen-containing metal complexes and metalloenzymes, such as the oxygen-evolving complex in photosystem II and its small-molecule mimics. Here we report the synthesis and characterization of non-haem iron(III)-peroxo complexes that bind redox-inactive metal ions, (TMC)Fe(III)-(μ,η(2):η(2)-O2)-M(n+) (M(n+) = Sr(2+), Ca(2+), Zn(2+), Lu(3+), Y(3+) and Sc(3+); TMC, 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane). We demonstrate that the Ca(2+) and Sr(2+) complexes showed similar electrochemical properties and reactivities in one-electron oxidation or reduction reactions. However, the properties and reactivities of complexes formed with stronger Lewis acidities were found to be markedly different. Complexes that contain Ca(2+) or Sr(2+) ions were oxidized by an electron acceptor to release O2, whereas the release of O2 did not occur for complexes that bind stronger Lewis acids. We discuss these results in the light of the functional role of the Ca(2+) ion in the oxidation of water to dioxygen by the oxygen-evolving complex.