Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 10(9), 2018

DOI: 10.1038/s41419-018-1009-8

Links

Tools

Export citation

Search in Google Scholar

Polybrene induces neural degeneration by bidirectional Ca2+ influx-dependent mitochondrial and ER–mitochondrial dynamics

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHexadimethrine bromide (Polybrene) was once used clinically as a heparin neutralizer and has recently found use as a promoter in virus-mediated gene therapy trials and gene transfer in research. However, the potential for tissue-specific toxicity of polybrene at low doses has been ignored so far. Here, we found that after intracerebroventricular (ICV) polybrene injection, mice showed disability of movement accompanied neural death and gliosis in brain, and in human neurons, polybrene induces concentration-dependent neuritic beading and fragmentation. Mechanistically, polybrene induces a rapid voltage-dependent calcium channel (VDCC)-mediated influx of extracellular Ca2+. The elevated cytoplasmic Ca2+ activates DRP1, which leads to mitochondrial fragmentation and metabolic dysfunction. At the same time, Ca2+ influx induces endoplasmic reticulum (ER) fragmentation and tightened associations between ER and mitochondria, which makes mitochondria prone to Ca2+ overloading and ensuing permeability transition. These results reveal an unexpected neuronal toxicity of polybrene, wherein Ca2+ influx serves as a regulator for both mitochondrial dynamics and ER–mitochondrial remodeling.