Full text: Download
Malaria is a major cause of global childhood mortality. To sustain progress in disease control made in the last decade, new antimalarial therapies are needed to combat emerging drug resistance. Malaria parasites contain a relict chloroplast called the apicoplast, which harbors new targets for drug discovery. Unfortunately, some drugs targeting apicoplast pathways exhibit a delayed-death phenotype, which results in a slow onset-of-action that precludes their use as fast-acting, frontline therapies. Identification of druggable apicoplast biogenesis factors that will avoid the delayed-death phenotype is an important priority. Here, we find that chemical stabilization of an apicoplast-targeted mDHFR domain disrupts apicoplast biogenesis and inhibits parasite growth after a single lytic cycle, suggesting a non-delayed-death target. Our finding indicates that further interrogation of the mechanism-of-action of this exogenous fusion protein may reveal novel therapeutic avenues.