Published in

EDP Sciences, The European Physical Journal Applied Physics, 3(83), p. 30201, 2018

DOI: 10.1051/epjap/2018170397

Links

Tools

Export citation

Search in Google Scholar

Does Fourier analysis yield reliable amplitudes of quantum oscillations?

Journal article published in 2018 by Alain Audouard, Jean-Yves Fortin ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Quantum oscillation amplitudes of multiband metals, such as high-Tc superconductors in the normal state, heavy fermions or organic conductors, are generally determined through Fourier analysis of the data even though the oscillatory part of the signal is field dependent. It is demonstrated that the amplitude of a given Fourier component can strongly depend on both the nature of the windowing (either flat, Hahn or Blackman window) and, since oscillations are obtained within a finite field range, the window width. Consequences on the determination of the Fourier amplitudes, hence of the effective masses, are examined in order to determine the conditions for reliable data analysis.