Published in

Hindawi, Complexity, (2017), p. 1-18, 2017

DOI: 10.1155/2017/3742197

Links

Tools

Export citation

Search in Google Scholar

Dynamical Analysis of a Class of Prey-Predator Model with Beddington-DeAngelis Functional Response, Stochastic Perturbation, and Impulsive Toxicant Input

Journal article published in 2017 by Feifei Bian, Wencai Zhao ORCID, Yi Song ORCID, Rong Yue
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

A stochastic prey-predator system in a polluted environment with Beddington-DeAngelis functional response is proposed and analyzed. Firstly, for the system with white noise perturbation, by analyzing the limit system, the existence of boundary periodic solutions and positive periodic solutions is proved and the sufficient conditions for the existence of boundary periodic solutions and positive periodic solutions are derived. And then for the stochastic system, by introducing Markov regime switching, the sufficient conditions for extinction or persistence of such system are obtained. Furthermore, we proved that the system is ergodic and has a stationary distribution when the concentration of toxicant is a positive constant. Finally, two examples with numerical simulations are carried out in order to illustrate the theoretical results.