Published in

Wiley, Advanced Materials, 38(30), p. 1802883

DOI: 10.1002/adma.201802883

Links

Tools

Export citation

Search in Google Scholar

Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing

Journal article published in 2018 by Yan Wang, Ziyu Lv ORCID, Jinrui Chen, Zhanpeng Wang, Ye Zhou, Li Zhou, Xiaoli Chen, Su-Ting Han ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

AbstractInspired by the biological neuromorphic system, which exhibits a high degree of connectivity to process huge amounts of information, photonic memory is expected to pave a way to overcome the von Neumann bottleneck for nonconventional computing. Here, a photonic flash memory based on all‐inorganic CsPbBr3 perovskite quantum dots (QDs) is demonstrated. The heterostructure formed between the CsPbBr3 QDs and semiconductor layer serves as a basis for optically programmable and electrically erasable characteristics of the memory device. Furthermore, synapse functions including short‐term plasticity, long‐term plasticity, and spike‐rate‐dependent plasticity are emulated at the device level. The photonic potentiation and electrical habituation are implemented and the synaptic weight exhibits multiple wavelength response from 365, 450, 520 to 660 nm. These results may locate the stage for further thrilling novel advances in perovskite‐based memories.