Published in

Springer Nature [academic journals on nature.com], Cell Death and Disease, 10(9), 2018

DOI: 10.1038/s41419-018-0955-5

Links

Tools

Export citation

Search in Google Scholar

MiR-423-5p in brain metastasis: potential role in diagnostics and molecular biology

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractDuring the last several years, a growing number of studies have shown that microRNAs (miRNAs) participate in cancer metastasis. Brain metastasis (BM) is a frequent complication of lung adenocarcinoma (LAD), and the incidence of locally advanced LAD with BM can be as high as 30–50%. This study was performed to identify the miRNA expression patterns of LAD with BM and to determine the biological role that miRNAs play in tumorigenesis. To this end, we conducted microarray and quantitative PCR analyses to evaluate BM-related miRNAs independently validated from a total of 155 patients with LAD. A series of in vivo and in vitro assays were also conducted to verify the impact of miRNAs on BM. We found significantly increased expression of miR-423-5p, and BM was predicted in non-small cell lung cancer when compared to LAD without BM. We next examined the function of miR-423-5p and discovered that it significantly promoted colony formation, cell motility, migration, and invasion in vitro. We computationally and experimentally confirmed that metastasis suppressor 1 (MTSS1) was a direct miR-423-5p target. Through a combination of image, histological, and molecular analyses, we found that miR-423-5p overexpression significantly increased tumor burden, local invasion, and distant BM. The level of MTSS1 expression was inversely correlated with miR-423-5p upregulation in the LAD specimens and was associated with survival of patients with BM. MiR-423-5p promoted BM in LAD and inhibited MTSS1 expression. Together, these results show that MiR-423-5p has the potential to be a marker of BM and/or a therapeutic target in LAD.