Published in

EDP Sciences, Astronomy & Astrophysics, (619), p. A122, 2018

DOI: 10.1051/0004-6361/201833899

Links

Tools

Export citation

Search in Google Scholar

Probing modified gravity in cosmic filaments

Journal article published in 2018 by Alex Ho ORCID, Max Gronke ORCID, Bridget Falck, David F. Mota
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Multiple modifications of general relativity (GR) have been proposed in the literature in order to understand the nature of the accelerated expansion of the Universe. However, thus far all the predictions of GR have been confirmed with constantly increasing accuracy. In this work, we study the imprints of a particular class of models – “screened” modified gravity theories – on cosmic filaments. We have utilized the N-body code ISIS/RAMSES to simulate the symmetron model and the Hu–Sawicky f(R) model, and we post-process the output with DisPerSE to identify the filaments of the cosmic web. We investigated how the global properties of the filaments – such as their lengths, masses, and thicknesses – as well as their radial density and speed profiles change under different gravity theories. We find that filaments are, on average, shorter and denser in modified gravity models compared to in ΛCDM. We also find that the speed profiles of the filaments are enhanced, consistent with theoretical expectations. Overall, our results suggest that cosmic filaments can be an effective complementary probe of screened modified gravity theories on Mpc scales.