Dissemin is shutting down on January 1st, 2025

Published in

Society for Neuroscience, Journal of Neuroscience, 9(20), p. 3310-3318, 2000

DOI: 10.1523/jneurosci.20-09-03310.2000

Links

Tools

Export citation

Search in Google Scholar

Cortical Regions Involved in Perceiving Object Shape

Journal article published in 2000 by Zoe Kourtzi ORCID, Nancy Kanwisher
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The studies described here use functional magnetic resonance imaging to test whether common or distinct cognitive and/or neural mechanisms are involved in extracting object structure from the different image cues defining an object's shape, such as contours, shading, and monocular depth cues. We found overlapping activations in the lateral and ventral occipital cortex [known as the lateral occipital complex (LOC)] for objects defined by different visual cues (e.g., grayscale photographs and line drawings) when each was compared with its own scrambled-object control. In a second experiment we found a reduced response when objects were repeated, independent of whether they appeared in the same or a different format (i.e., grayscale images vs line drawings). A third experiment showed that activation in the LOC was no stronger for three-dimensional shapes defined by contours or monocular depth cues, such as occlusion, than for two-dimensional shapes, suggesting that these regions are not selectively involved in processing three-dimensional shape information. These results suggest that common regions in the LOC are involved in extracting and/or representing information about object structure from different image cues.