Dissemin is shutting down on January 1st, 2025

Published in

Massachusetts Institute of Technology Press, Network Neuroscience, 1(3), p. 124-137, 2019

DOI: 10.1162/netn_a_00057

Links

Tools

Export citation

Search in Google Scholar

Multiscale examination of cytoarchitectonic similarity and human brain connectivity

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Orange circle
Preprint: archiving restricted
Orange circle
Postprint: archiving restricted
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The human brain comprises an efficient communication network, with its macroscale connectome organization argued to be directly associated with the underlying microscale organization of the cortex. Here, we further examine this link in the human brain cortex by using the ultrahigh-resolution BigBrain dataset; 11,660 BigBrain profiles of laminar cell structure were extracted from the BigBrain data and mapped to the MRI based Desikan–Killiany atlas used for macroscale connectome reconstruction. Macroscale brain connectivity was reconstructed based on the diffusion-weighted imaging dataset from the Human Connectome Project and cross-correlated to the similarity of laminar profiles. We showed that the BigBrain profile similarity between interconnected cortical regions was significantly higher than those between nonconnected regions. The pattern of BigBrain profile similarity across the entire cortex was also found to be strongly correlated with the pattern of cortico-cortical connectivity at the macroscale. Our findings suggest that cortical regions with higher similarity in the laminar cytoarchitectonic patterns have a higher chance of being connected, extending the evidence for the linkage between macroscale connectome organization and microscale cytoarchitecture.