Published in

Future Medicine, Nanomedicine, 20(11), p. 2647-2662, 2016

DOI: 10.2217/nnm-2016-0174

Links

Tools

Export citation

Search in Google Scholar

Vaccination with trifunctional nanoparticles that address CD8+dendritic cells inhibits growth of established melanoma

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Aim: We wanted to assess the potency of a trifunctional nanoparticle (NP) that targeted and activated CD8+ dendritic cells (DC) and delivered an antigen to induce antitumor responses. Materials & methods: The DC targeting and activating properties of ferrous NPs conjugated with immunostimulatory CpG-oligonucleotides, anti-DEC205 antibody and ovalbumin (OVA) as a model antigen to induce antigen-specific T-cell responses and antitumor responses were analyzed. Results: OVA-loaded NP conjugated with immunostimulatory CpG-oligonucleotides and anti-DEC205 antibody efficiently targeted and activated CD8+ DC in vivo, and induced strong OVA-specific T-cell activation. Vaccination of B16/OVA tumor-burdened mice with this NP formulation resulted in tumor growth arrest. Conclusion: CD8+ DC-targeting trifunctional nanocarriers bear significant potential for antitumor immunotherapy.