Dissemin is shutting down on January 1st, 2025

Published in

American Meteorological Society, Journal of Climate, 18(31), p. 7269-7286, 2018

DOI: 10.1175/jcli-d-17-0747.1

Links

Tools

Export citation

Search in Google Scholar

Projection of Landfalling–Tropical Cyclone Rainfall in the Eastern United States under Anthropogenic Warming

Journal article published in 2018 by Maofeng Liu ORCID, Gabriel A. Vecchi ORCID, James A. Smith, Hiroyuki Murakami
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

AbstractLandfalling–tropical cyclone (TC) rainfall is an important element of inland flood hazards in the eastern United States. The projection of landfalling-TC rainfall under anthropogenic warming provides insight into future flood risks. This study examines the frequency of landfalling TCs and associated rainfall using the GFDL Forecast-Oriented Low Ocean Resolution (FLOR) climate model through comparisons with observed TC track and rainfall over the July–November 1979–2005 seasons. The projection of landfalling-TC frequency and rainfall under the representative concentration pathway (RCP) 4.5 scenario for the late twenty-first century is explored, including an assessment of the impacts of extratropical transition (ET). In most regions of the southeastern United States, competition between increased storm rain rate and decreased storm frequency dominates the change of annual TC rainfall, and rainfall from ET and non-ET storms. In the northeastern United States, a prominent feature is the striking increase of ET-storm frequency but with tropical characteristics (i.e., prior to the ET phase), a key element of increased rainfall. The storm-centered rainfall composite analyses show the greatest increase at a radius of a few hundred kilometers from the storm centers. Over both ocean and land, the increase of rainfall within 500 km from the storm center exceeds the Clausius–Clapeyron scaling for TC-phase storms. Similar results are found in the front-left quadrant of ET-phase storms. Future work involving explorations of multiple models (e.g., higher atmospheric resolution version of the FLOR model) for TC-rainfall projection is expected to add more robustness to projection results.