Published in

Nature Research, Scientific Reports, 1(7), 2017

DOI: 10.1038/s41598-017-11715-x

Links

Tools

Export citation

Search in Google Scholar

Adaptive pixel-super-resolved lensfree in-line digital holography for wide-field on-chip microscopy

Journal article published in 2017 by Jialin Zhang ORCID, Jiasong Sun, Qian Chen ORCID, Jiaji Li ORCID, Chao Zuo ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractHigh-resolution wide field-of-view (FOV) microscopic imaging plays an essential role in various fields of biomedicine, engineering, and physical sciences. As an alternative to conventional lens-based scanning techniques, lensfree holography provides a new way to effectively bypass the intrinsical trade-off between the spatial resolution and FOV of conventional microscopes. Unfortunately, due to the limited sensor pixel-size, unpredictable disturbance during image acquisition, and sub-optimum solution to the phase retrieval problem, typical lensfree microscopes only produce compromised imaging quality in terms of lateral resolution and signal-to-noise ratio (SNR). Here, we propose an adaptive pixel-super-resolved lensfree imaging (APLI) method which can solve, or at least partially alleviate these limitations. Our approach addresses the pixel aliasing problem by Z-scanning only, without resorting to subpixel shifting or beam-angle manipulation. Automatic positional error correction algorithm and adaptive relaxation strategy are introduced to enhance the robustness and SNR of reconstruction significantly. Based on APLI, we perform full-FOV reconstruction of a USAF resolution target (~29.85 mm2) and achieve half-pitch lateral resolution of 770 nm, surpassing 2.17 times of the theoretical Nyquist–Shannon sampling resolution limit imposed by the sensor pixel-size (1.67µm). Full-FOV imaging result of a typical dicot root is also provided to demonstrate its promising potential applications in biologic imaging.