Published in

Oxford University Press, Stem Cells, 8(36), p. 1179-1197, 2018

DOI: 10.1002/stem.2827

Links

Tools

Export citation

Search in Google Scholar

Neural Stem Cell Grafts Promote Astroglia-Driven Neurorestoration in the Aged Parkinsonian Brain via Wnt/β-Catenin Signaling

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract During aging—one the most potent risk factors for Parkinson's disease (PD)—both astrocytes and microglia undergo functional changes that ultimately hamper homoeostasis, defense, and repair of substantia nigra pars compacta (SNpc) midbrain dopaminergic (mDA) neurons. We tested the possibility of rejuvenating the host microenvironment and boosting SNpc DA neuronal plasticity via the unilateral transplantation of syngeneic neural stem/progenitor cells (NSCs) in the SNpc of aged mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced experimental PD. Transplanted NSCs within the aged SNpc engrafted and migrated in large proportions to the tegmental aqueduct mDA niche, with 30% acquiring an astroglial phenotype. Both graft-derived exogenous (ex-Astro) and endogenous astrocytes (en-Astro) expressed Wnt1. Both ex-Astro and en-Astro were key triggers of Wnt/β-catenin signaling in SNpc-mDA neurons and microglia, which was associated with mDA neurorescue and immunomodulation. At the aqueduct–ventral tegmental area level, NSC grafts recapitulated a genetic Wnt1-dependent mDA developmental program, inciting the acquisition of a mature Nurr1+TH+ neuronal phenotype. Wnt/β-catenin signaling antagonism abolished mDA neurorestoration and immune modulatory effects of NSC grafts. Our work implicates an unprecedented therapeutic potential for somatic NSC grafts in the restoration of mDA neuronal function in the aged Parkinsonian brain.