Published in

SAGE Publications, European Journal of Mass Spectrometry, 2(23), p. 64-69, 2017

DOI: 10.1177/1469066717699078

Links

Tools

Export citation

Search in Google Scholar

Dynamic measurement of newly formed carbonyl compounds in vapors from electronic cigarettes

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Recently, the formation of carbonyl compound within e-cigarettes usage has been reported. The aim of this study was to develop a new analytical method for the direct analysis of carbonyl compounds in vaporized liquids. Two different types of e-cigarettes and different puff’s duration have been evaluated, using a modified smoking machine for vapor generation. An isotopic dilution approach, based on deuterated internal standard addition to the e-liquid before filling the e-cigarette tank, has been developed. Carbonyl compounds have been sampled in vapors using a direct, simple, solid-phase microextraction technique with on-fiber derivatization. Related oximes have been analyzed by gas chromatography/mass spectrometry technique. Results confirmed that new carbonyl compounds are formed during the vaping process, and that formation depends both from the heating device and from puffing topography.