Dissemin is shutting down on January 1st, 2025

Published in

The Company of Biologists, Development, 17(145), 2018

DOI: 10.1242/dev.168369

Links

Tools

Export citation

Search in Google Scholar

The cytochrome P450 CYP77A4 is involved in auxin-mediated patterning of the Arabidopsis thaliana embryo

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACTMetabolism often plays an important role in developmental control, in addition to supporting basal physiological requirements. However, our understanding of this interaction remains limited. Here, we performed quantitative phenome analysis of Arabidopsis thaliana cytochrome P450 mutants to identify a novel interaction between development and metabolism. We found that cyp77a4 mutants exhibit specific defects in cotyledon development, including asymmetric positioning and cup-shaped morphology, which could be rescued by introducing the CYP77A4 gene. Microscopy revealed that the abnormal patterning was detected at least from the 8-cell stage of the cyp77a4 embryos. We next analysed auxin distribution in mutant embryos, as the phenotypes resembled those of auxin-related mutants. We found that the auxin response pattern was severely perturbed in the cyp77a4 embryos owing to an aberrant distribution of the auxin efflux carrier PIN1. CYP77A4 intracellularly localised to the endoplasmic reticulum, which is consistent with the notion that this enzyme acts as an epoxidase of unsaturated fatty acids in the microsomal fraction. We propose that the CYP77A4-dependent metabolic pathway is an essential element for the establishment of polarity in plant embryos.