Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 39(115), p. 9791-9796, 2018

DOI: 10.1073/pnas.1808274115

Links

Tools

Export citation

Search in Google Scholar

Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces

Journal article published in 2018 by Robin Tecon, Ali Ebrahimi, Hannah Kleyer, Shai Erev Levi, Dani Or ORCID
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bacterial cell-to-cell interactions are in the core of evolutionary and ecological processes in soil and other environments. Under most conditions, natural soils are unsaturated where the fragmented aqueous habitats and thin liquid films confine bacterial cells within small volumes and close proximity for prolonged periods. We report effects of a range of hydration conditions on bacterial cell-level interactions that are marked by plasmid transfer between donor and recipient cells within populations of the soil bacterium Pseudomonas putida . Using hydration-controlled sand microcosms, we demonstrate that the frequency of cell-to-cell contacts under prescribed hydration increases with lowering water potential values (i.e., under drier conditions where the aqueous phase shrinks and fragments). These observations were supported using a mechanistic individual-based model for linking macroscopic soil water potential to microscopic distribution of liquid phase and explicit bacterial cell interactions in a simplified porous medium. Model results are in good agreement with observations and inspire confidence in the underlying mechanisms. The study highlights important physical factors that control short-range bacterial cell interactions in soil and on surfaces, specifically, the central role of the aqueous phase in mediating bacterial interactions and conditions that promote genetic information transfer in support of soil microbial diversity.