Published in

Elsevier, Biochemical Pharmacology, 12(83), p. 1623-1633, 2012

DOI: 10.1016/j.bcp.2012.03.004

Links

Tools

Export citation

Search in Google Scholar

Impact of terminal dimethylation on the resistance profile of α-N-heterocyclic thiosemicarbazones

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Triapine is an α-N-heterocyclic thiosemicarbazone with promising anticancer activity against hematologic malignancies but widely ineffective against solid tumor types in clinical trials. The anticancer activity of thiosemicarbazones can be dramatically increased by terminal dimethylation. KP1089 is a gallium compound containing two terminal dimethylated thiosemicarbazone ligands. To gain insights on the vulnerability of this highly active terminal dimethylated thiosemicarbazone to drug resistance mechanisms, a new cell model with acquired resistance against the lead compound KP1089 was established. Subsequent genomic analyses (arrayCGH and FISH) revealed amplification of the ABCC1 gene on double minute chromosomal DNA in KP1089-resistant cells as well as overexpression of ABCC1 and ABCG2 on the protein level. KP1089 was further confirmed as a substrate of ABCC1 and ABCG2 but not of ABCB1 using a panel of ABC transporter-overexpressing cell models as well as ABC transporter inhibitors. Moreover, glutathione depletion strongly enhanced KP1089 activity, although no glutathione conjugate formation by glutathione-S-transferase was observed. Thus, a co-transport of KP1089 together with glutathione is suggested. Finally, a panel of thiosemicarbazone derivatives was tested on the new KP1089-resistant cell line. Notably, KP1089-resistant cells were not cross-resistant against thiosemicarbazones lacking terminal dimethylation (e.g. Triapine) which are less active than KP1089. This suggests that terminal dimethylation of thiosemicarbazones – linked with distinctly enhanced anticancer activity – leads to altered resistance profiles compared to classical thiosemicarbazones making this compound class of interest for further (pre)clinical evaluation.