Published in

Nature Research, Scientific Reports, 1(8), 2018

DOI: 10.1038/s41598-018-32030-z

Links

Tools

Export citation

Search in Google Scholar

An incoherent feed-forward loop switches the Arabidopsis clock rapidly between two hysteretic states

Journal article published in 2018 by Ignasius Joanito ORCID, Jhih-Wei Chu, Shu-Hsing Wu, Chao-Ping Hsu ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

AbstractIn higher plants (e.g., Arabidopsis thaliana), the core structure of the circadian clock is mostly governed by a repression process with very few direct activators. With a series of simplified models, we studied the underlying mechanism and found that the Arabidopsis clock consists of type-2 incoherent feed-forward loops (IFFLs), one of them creating a pulse-like expression in PRR9/7. The double-negative feedback loop between CCA1/LHY and PRR5/TOC1 generates a bistable, hysteretic behavior in the Arabidopsis circadian clock. We found that the IFFL involving PRR9/7 breaks the bistability and moves the system forward with a rapid pulse in the daytime, and the evening complex (EC) breaks it in the evening. With this illustration, we can intuitively explain the behavior of the clock under mutant conditions. Thus, our results provide new insights into the underlying network structures of the Arabidopsis core oscillator.