Published in

American Heart Association, Hypertension, 1(69), p. 51-59, 2017

DOI: 10.1161/hypertensionaha.116.08267

Links

Tools

Export citation

Search in Google Scholar

Genome-wide and gene-based meta-analyses identify novel loci influencing blood pressure response to hydrochlorothiazide

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This study aimed to identify novel loci influencing the antihypertensive response to hydrochlorothiazide monotherapy. A genome-wide meta-analysis of blood pressure (BP) response to hydrochlorothiazide was performed in 1739 white hypertensives from 6 clinical trials within the International Consortium for Antihypertensive Pharmacogenomics Studies, making it the largest study to date of its kind. No signals reached genome-wide significance ( P <5×10 8 ), and the suggestive regions ( P <10 −5 ) were cross-validated in 2 black cohorts treated with hydrochlorothiazide. In addition, a gene-based analysis was performed on candidate genes with previous evidence of involvement in diuretic response, in BP regulation, or in hypertension susceptibility. Using the genome-wide meta-analysis approach, with validation in blacks, we identified 2 suggestive regulatory regions linked to gap junction protein α1 gene ( GJA1 ) and forkhead box A1 gene ( FOXA1 ), relevant for cardiovascular and kidney function. With the gene-based approach, we identified hydroxy-delta-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 1 gene ( HSD3B1 ) as significantly associated with BP response ( P <2.28×10 4 ). HSD3B1 encodes the 3β-hydroxysteroid dehydrogenase enzyme and plays a crucial role in the biosynthesis of aldosterone and endogenous ouabain. By amassing all of the available pharmacogenomic studies of BP response to hydrochlorothiazide, and using 2 different analytic approaches, we identified 3 novel loci influencing BP response to hydrochlorothiazide. The gene-based analysis, never before applied to pharmacogenomics of antihypertensive drugs to our knowledge, provided a powerful strategy to identify a locus of interest, which was not identified in the genome-wide meta-analysis because of high allelic heterogeneity. These data pave the way for future investigations on new pathways and drug targets to enhance the current understanding of personalized antihypertensive treatment.