Published in

National Academy of Sciences, Proceedings of the National Academy of Sciences, 50(105), p. 19672-19677, 2008

DOI: 10.1073/pnas.0810712105

Links

Tools

Export citation

Search in Google Scholar

Amino acids with an intermolecular proton bond as proton storage site in bacteriorhodopsin

Journal article published in 2008 by Prasad Phatak, Nilanjan Ghosh, Haibo Yu ORCID, Qiang Cui, Marcus Elstner
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The positions of protons are not available in most high-resolution structural data of biomolecules, thus the identity of proton storage sites in biomolecules that transport proton is generally difficult to determine unambiguously. Using combined quantum mechanical/molecular mechanical computations, we demonstrate that a pair of conserved glutamate residues (Glu 194/204) bonded by a delocalized proton is the proton release group that has been long sought in the proton pump, bacteriorhodopsin. This model is consistent with all available experimental structural and infrared data for both the wild-type bacteriorhodopsin and several mutants. In particular, the continuum infrared band in the 1,800- to 2,000-cm −1 region is shown to arise due to the partially delocalized nature of the proton between the glutamates in the wild-type bacteriorhodopsin; alternations in the flexibility of the glutamates and electrostatic nature of nearby residues in various mutants modulate the degree of proton delocalization and therefore intensity of the continuum band. The strong hydrogen bond between Glu 194/204 also significantly shifts the carboxylate stretches of these residues well <1,700 cm −1 , which explains why carboxylate spectral shift was not observed experimentally in the typical >1,700-cm −1 region upon proton release. By contrast, simulations with the proton restrained on the nearby water cluster, as proposed by several recent studies [see, for example, Garezarek K, Gerwert K (2006) Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. Nature 439:109], led to significant structural deviations from available X-ray structures. This study establishes a biological function for strong, low-barrier hydrogen bonds.