Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press, The Plant Cell, 5(15), p. 1095-1110, 2003

DOI: 10.1105/tpc.010413

Links

Tools

Export citation

Search in Google Scholar

Dominant-Negative Receptor Uncovers Redundancy in the Arabidopsis ERECTA Leucine-Rich Repeat Receptor–Like Kinase Signaling Pathway That Regulates Organ Shape

Journal article published in 2003 by Michael B. Lakeman, Elena D. Shpak, Keiko U. Torii ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Arabidopsis ERECTA, a Leu-rich repeat receptor-like Ser/Thr kinase (LRR-RLK), regulates organ shape and inflorescence architecture. Here, we show that a truncated ERECTA protein that lacks the cytoplasmic kinase domain (DeltaKinase) confers dominant-negative effects when expressed under the control of the native ERECTA promoter and terminator. Transgenic plants expressing DeltaKinase displayed phenotypes, including compact inflorescence and short, blunt siliques, that are characteristic of loss-of-function erecta mutant plants. The DeltaKinase fragment migrated as a stable approximately 400-kD protein complex in the complete absence of the endogenous ERECTA protein and significantly exaggerated the growth defects of the null erecta plants. A functional LRR domain of DeltaKinase was required for dominant-negative effects. Accumulation of DeltaKinase did not interfere with another LRR-RLK signaling pathway (CLAVATA1), which operates in the same cells as ERECTA but has a distinct biological function. Both the erecta mutation and DeltaKinase expression conferred a lesser number of large, disorganized, and expanded cortex cells, which are associated with an increased level of somatic endoploidy. These findings suggest that functionally redundant RLK signaling pathways, including ERECTA, are required to fine-tune the proliferation and growth of cells in the same tissue type during Arabidopsis organogenesis.